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Abstract

The ever-increasing amount of available information in
today's digital society necessitates inline techniques for de­
termining the most relevant content. Collaborative filtering
(CF) systems have proven to be an adequate means for re­
ducing informational overload and generating useful rec­
ommendations. Current systems are predominantly built on
centralized or, more recently, structured Peer-to-Peer (P2P)
approaches. However, in order to apply collaborative filter­
ing to large-scale distributed virtual environments (DVEs)
in unstructured networks with substatially higher user num­
bers, different approaches are necessary.
Within this paper we present a collaborative filtering algo­
rithm for DVEs utilizing epidemic data aggregation based
exclusively on local information. Designed to be extremely
scalable, it creates recommendations in a transparent way
by distributing an accumulated view offavorite ratings to
interacting users. The algorithm is intendedfor deployment
in the HyperVerse - a self-organizing middleware service
for large-scale DVEs - for generating and managing rat­
ing predictions ofobject favorites. Evaluation results show
that, in terms ofquality, locally aggregated predictions con­
verge well on those obtainedfrom an idealized global view.

1 Introduction

As the information load of today' s society increases sub­
stantially every day, obtaining the most relevant data be­
comes more and more difficult. By generating recommen­
dations for items based on the taste of like-minded users,
collaborative filtering is a well-established technique to re­
duce information overload [17]. Prevalent systems using
collaborative filtering mostly depend on huge centralized
databases to store user preferences or item-item similarity
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matrices. In particular large online retailers like e.g. Ama­
zon gather personal information or characteristic patterns
over time either explicitly by the user giving a rating on
an item or by implicitly counting clicks, viewing time or
other characteristic data to generate preferences. Some of
these systems combine CF with content-based techniques,
which often suffer from limited item categorizations when
employed alone.
Instead of utilizing centralized databases, recommendations
can also be obtained through finding the necessary data in a
transparent, distributed fashion. Such an approach becomes
crucial when dealing with extremely large-scale, decentral­
ized scenarios as for instance next-generation DVEs. This
paper proposes a novel collaborative filtering scheme based
on the epidemic aggregation of rating data for the use in
such environments which scales in terms of user and item
numbers. It creates recommendations for object or location
favorites in a lightweight fashion by distributing an accu­
mulated view of favorite ratings between interacting users.
The mechanism is meant to be integrated directly into the
HyperVerse infrastructure [3], a P2P-based self-organizing
middleware service for massively distributed virtual envi­
ronments, and utilizes its internal management update mes­
sages. This, along with capped list sizes, assures that only
an insignificant amount of extra network load is induced for
the CF. Additionally, the presented algorithm is not based
simply on a distributed item-item matrix or preference pro­
files: ratings and recommendations are created and man­
aged locally according to the social bias of the user.

The remainder of this paper is structured as follows: Sec­
tion 2 features related work in the context of collabora­
tive filtering, P2P overlay networks and distributed environ­
ments. Section 3 gives a short introduction to the Hyper­
Verse, which incorporates the filtering algorithm. Section
4 then covers the CF algorithm itself, while Section 5 de­
scribes the experiments and evaluations performed with our
filtering approach on different datasets in comparison to an



idealized complete knowledge scenario. Finally, a summary
and conclusion of the proposed approach and possible fu­
ture work are given in Section 6.

2 Related Work

In this section we introduce and discuss existing research
in the context of collaborative filtering in distributed envi­
ronments.

[20] considers a method for creating a scalable recom­
mendation system for mobile commerce using P2P systems.
The main idea of the proposed approach is to transform the
problem of extracting recommendations through collabora­
tive filtering into a general search problem in scalable P2P
systems like Freenet or Gnutella. Thereby, a query (a vec­
tor with votes on products) is broadcasted from the querying
node to all its neighbor peers. Once a peer receives a query
it calculates the proximity to other cached queries. If the
proximity is higher than a certain threshold, the cached vot­
ing vector is sent back; otherwise the query is disseminated
further. For sparse voting vectors, the authors propose a
binary interpolative compression algorithm. Furthermore,
to improve the performance and quality of recommenda­
tions, they introduce an approach for the clustering of simi­
lar peers.

Kim et al. propose a similar approach in [15]. In ad­
dition to the own user profile, each peer manages a friend
list which stores peers with similar interests. In order to ini­
tially find such friends for a peer, the system utilizes a flood­
ing mechanism. A receiving peer calculates cosine similar­
ity between the received and its personal user preferences.
If the calculated value is higher than a certain threshold,
an identifier of the receiving peer together with the own
ratings are sent back. Otherwise, the receiving peer sim­
ply forwards the request. After this broadcast, the returned
top n similar peers are kept in the friends list of the source
peer. For each peer in such a friend list, an overlay network
("friend network") can be created. In order to periodically
update a peers' friends list, the authors propose to initiate
the flooding mechanism over the friend network instead of
flooding the entire network again.

In [10] an algorithm called pipeCF is presented, which
manages user databases and calculates rating predictions in
a decentralized way within a P2P overlay network based on
distributed hash tables (DHT). In order to reduce the num­
ber of returned nearest neighbors for an active user (who
should be included in the prediction algorithm for the local
user), the authors additionally introduce a techniw called
significance refinement (SR) which improves prediction ac­
curacy.

In all the above mentioned and other similar approaches
[16, 9] user profiles are collected either by using a broad­
casting mechanism or by using DHTs to map unique keys
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to profiles. This requires additional network traffic over­
head, resulting in severe scalability issues when extended
to the envisioned global scale [21].

A different approach for distributed collaborative fil­
tering in P2P file sharing systems is also presented in
[21]. Unlike the above approaches, this system implicitly
"learns" user interests from users' interaction data. Conse­
quently, the list of downloaded items is considered as the
user profile. As a key concept, each item stores a so called
"buddy table" containing a list of other items relevant to it­
self. These buddy tables represent a self-organizing seman­
tic overlay that implicitly clusters similar items. Further­
more, updates of the buddy tables only occur when items
are downloaded. Thus no additional network traffic is gen­
erated. Due to the fact that this approach presumes the ex­
change of multimedia files in order to create and update the
corresponding buddy tables - a common aspect for file shar­
ing systems - it is not applicable for our scenario, either.

A collaborative filtering technique in a mobile tourist in­
formation system for visitors of a music festival, based on
spatio-temporal proximity in social contexts, is proposed in
[6]. The presented idea utilizes a user-based CF technique
and calculates similar users via a location- and time-based
proximity measure, i.e, two users are considered to be sim­
ilar if they consume the same event simultaneously. Rating
information between these similar users is exchanged via
an ad-hoc P2P interaction. Furthermore, rating information
is only exchanged if a peer resides in another peer's cov­
erage area for a certain period of time. The defined sim­
ilarity measure has one definite drawback though: users
consuming the same periodic event at different times still
share interests, but are not considered to be similar. In fu­
ture work, the authors intend to investigate how their CF
approach can be extended in order to exchange ratings be­
tween users in spatial but not temporal proximity. Addition­
ally, they plan to evaluate the introduced CF system at the
Edinburgh Fringe festival.

In [22] Yang et. al introduce a decentralized collabora­
tive filtering for P2P systems based on a distributed prob­
abilistic item ranking model. To overcome the problem of
a missing centralized database of user preferences in their
P2P system, the authors developed an epidemic preference
exchange protocol called BuddyCast. No Evaluation has
been performed yet, but is intended as future work.

In [18] a further approach inter alia based on an epi­
demic spreading of user preferences is presented and also
evaluated. In their study the authors show how to reach
comparable prediction accuracies in a mobile scenario as
well as in a complete knowledge scenario. An evaluation
is presented, however there are two major shortcomings.
Firstly, limited resources of mobile devices have not been
considered as unlimited cache sizes are presumed. Sec­
ondly, no realistic mobility model has been used, but an



idealized data exchange pattern with disjoint pairs per it­
eration.

3 The HyperVerse

Before introducing the CF algorithm in detail, this
section will give a brief overview of the HyperVerse
project. Investigating fundamental principles suitable for
the realization of extremely large-scale and highly interac­
tive DVEs, the project aims at creating a self-organizing
and sustainable middleware service as a basis for future
virtual worlds like e.g. a 3D Internet.
One key feature of the HyperVerse middleware is the
underlying two-tier architecture shown schematically in
Figure 1: A loosely-coupled, statistical P2P client overlay
on top of a federated and highly structured public server
infrastructure which explicitly includes client resources at
the network's edges. This concept differs from existing
hosting approaches for MMVEs (Massively Multiuser
Virtual Environments) or MMOGs (Massive Multiplayer
Online Games), which are still mostly based on a central­
ized server infrastructure and therefore suffer from severe
scalability issues when extended to a larger or even global
scale. Data dissemination in the HyperVerse is based on
a Torrent-like technology [5], taking into account virtual
geography and thus exploiting access locality. Clients are
interconnected based on their proximity in virtual space
via a geographic indexing service, effectuating specific
qualities of the network, e.g. the power-law property,
and permitting self-adaptation of the statistical structure.
For more details on the infrastructure and the underlying
technologies, we refer to [3].

Highly str uctured public serve r overlay

Loosely st ructured
peer overlay

Figure 1. Two-tier HyperVerse architecture.

An important technical aspect of the HyperVerse infras­
tructure to mention for our CF approach however is the re­
ciprocal exchange of management messages during peer in­
teractions. Here we augment the existing logic by adding
data necessary for the collaborative filtering algorithm in a
piggy-back fashion as described in detail in the following
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section. The efficient provision and management of the ba­
sic background services is not focus of this paper but subject
to ongoing other research [8].

4 CF via Epidemic Aggregation

In order to calculate a rating prediction for a certain item,
centralized user-based CF methods use their global knowl­
edge to determine a set of top N similar users to the target
user that have rated this item. Subsequently, only the pro­
files of these N users are used to estimate the rating of the
target user for this specific item.
However, the P2P infrastructure of the HyperVerse as well
as user and oject dynamics in virtual environments do not
allow for centralized database-backed global knowledge in
the manner of item or preference matrices, since there is
no way of efficiently storing or accessing them. Thus, in
our CF approach we calculate predictions directly within
the peers based on local information only by weighted aver­
aging of rating deviations as described in [11]. Due to the
fact that the quality of the calculated predictions depends on
a critical set of locally available similar user preferences, we
need an efficient mechanism to determine such user prefer­
ences for each peer. The following subsection introduces
an information exchange protocol to efficiently aggregate
the most similar users for each peer.

4.1 Algorithm Description

Our aggregation algorithm is based on an epidemic pro­
tocol and exchanges user information in a gossiping man­
ner. Especially in the context of large-scale distributed sys­
tems such protocols emerged as an efficient communica­
tion paradigm maintaining scalability and simplicity [14].
In order to keep additional network load low, we designed
our algorithm as a piggy-back mechanism to already ex­
isting network messages periodically induced by so-called
interactions. These could be either explicitly triggered by
user-to-user interactions like e.g. a chat or physical actions
within one's virtual area of interest (AoI), or implicitly trig­
gered through interest group memberships, status messages
of buddies and so on. Along with a moderate cap for the
additional data, a maintainable and limited overhead for the
CF is assured. Furthermore, under the assumption that a
user within the HyperVerse will mainly interact with other
like-minded users in the virtual environment, this mecha­
nism leads to a native ratio of exploitation and exploration
via a more frequent exchange between like-minded users
and a rather sporadic exchange with other, unknown users.
The pseudo code in Listings 1 and 2 showcases the key el­
ements and general functionality of our algorihtm. It oper­
ates on a model generating interaction pairs of peers based
on a snapshot of the social relations between them. The



model is described in detail in section 5.
At first, each peer maintains a local cache containing its own
profile information, a list of most similar user preferences
Buddies and frequently received less or not similar pro­
files Othe r s as depicted in Figure 2. This structure differs
from existing approaches which do not distinguish between
profiles relevant to a peer itself and other data for altruistic
distribution to help increase effectiveness. In order to limit
the cache size corresponding to the available memory re­
sources within a peer, sizes of both lists are capped. During
an interaction peers exchange their local profile information
containing Buddies, Others and their own preferences.
Afterwards, each peer updates its local information via the
received data.

FUNCTION main ()
FOR each in terac ti 0 n pair x , y

d a t a i x = x. getCFData ()
da t a cy = y. getCFData ()
x. updateS tate (data_y)
y. updateState (data_x)

END FOR
END FUNCTION

FUNCTION updateState (CFdata)
FOR each profi Ie in CFdata

sim = calculateSimilarity (profile)
IF sim >= simi larityThreshold

IF profile is in others THEN
others. Remove ( profi Ie );

END IF
result = updateBuddies (profile, sim)
IF result is Nor true THEN

updateOthers (profile)
END IF

ELSE
IF profile is in buddies THEN

buddies. Remove ( profi Ie );
END IF
updateOthers (profile)

END IF
END FOR

END FUNCTION

Listing 1. Core Algorithm (Pseudo Code)

Before incorporating a received profile into the local
cache, the similarity between this profile and the actual user
profile is calculated. For similarity calculation we used the
Pearson correlation coefficient, which is a very accurate
performing measure in existing CF approaches [4]. If the
resulting similarity value is higher than or equal to a spec­
ified threshold, the corresponding profile will be inserted
into Buddies. Otherwise, the profile will be inserted into
Others. Once the Buddies or the Others list reaches
its limit, further profiles are inserted by applying the follow­
ing replacement strategies.

4.2 Replacement Strategies

Once the Buddies list fills up, a new profile will re­
place an existing one if and only if its similarity value is
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higher than the least similar profile. If the similarity is
not high enough, the profile will get a chance to be added
into the Others list. Replacement here is more complex,
with two different levels of importance based on a count­
ing mechanism. The list is sorted top down according to
this value, resulting in the most frequently exchanged user
profiles building the head of the list.

FUNCTION updateBuddies (profile, sim)
result = false
IF buddies is fu 11 THEN

lsbv = buddies. getLeastSimilarBuddyValue 0
IF lsbv < sim THEN

buddies. removeLeastSimilarBuddy 0
buddies.add(profile, sim)
result = true

END IF
ELSE

buddies. add( profile, sim)
result = true

END IF
REfURN res ult

END FUNCTION

FUNCTION updateOthers (profile)
IF profile is in others THEN

others. incrementCounter (id)
ELSE

IF others is full THEN
randomValue = dice (0,1)
IF randomValue > 0.5 THEN

others. removeRandomCandidateFromTail 0
others .add(profile, 1)

END IF
ELSE

others .add(profile, 1)
END IF

END IF
END FUNCTION

Listing 2. Cache Update (Pseudo Code)

The tail - configurable in its size - constitutes the pool
of replacable profiles with lower counter values. This quan­
titative distinction is made in order to be able to distribute
mostly profiles of so-called super nodes from the list. The
profiles on the lower level, i.e, the tail of the list, are then re­
placed using a random strategy. This, along with the altruis­
tic character of the Othe r s list, generates a certain "back­
ground emission" of broader-range preference data for im­
proving chances of receiving relevant profiles.

5 Evaluation

In order to evaluate our algorithm, we performed ex­
periments in extensive simulation runs with existing rating
databases utilizing exchange models based on social net­
work graphs. On the one hand, we picked the Moviel.ens!
data set, using a scale-free model for graph generation. On
the other hand, we chose the Epinions2 data set with sub­
stantially higher user numbers and more sparse data. Graph

1http://www.grouplens.org
2http://www.trustlet.org!wikilExtended-Epinions_dataset
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Profile om #om

generate the social network graph itself:

Growth : Starting with a small number of nodes mo,
at every discrete time step add a new node with m( ::;mo)
edges that link the new node to m different nodes already
present in the graph.

Preferential attachment: The probability II that a
new node will connect to a node i depends on the degree k;
of node i , so that

Figure 2. Local cache of user ua • Buddies
are ordered corresponding to their similarity
while the order on the right list is based on a
counting mechanism with only profiles at the
tail of this list being replaceable directly.

generation here is based on explicit trust/distrust informa­
tion already included in the set. The following sub-sections
describe in detail both the data sets and exchange model, as
well as the evaluations of the actual algorithm based on this
data.

5.1 Data

The MovieLens data set consists of 10.000.000 ratings
for 10.681 movies by 71.567 users. All ratings have been
given on a scale from 1 to 5 with each user rating at least 20
movies. The Epinions data set consists of 13.668.319 rat­
ings for 1.560.144 articles by 132.000 users. It further in­
cludes 841.372 trust statements (717.667 trusts and 123.705
distrusts). For both sets, the data has been split into a train­
ing and a test set with the training set containing 80 percent
and the test set the remaining 20 percent of the data.

5.2 Data Exchange

Due to the fact that the performance of gossip-based
protocols is highly sensitive to the overlay network
topology itself [13], a realistic topology is crucial for
evaluating our algorithm. Simple uniform and randomly
organized topologies would not be suitable, as they do not
sufficiently reflect the structure and properties of existing
social networks, such as a power-law distribution of node
degrees, low average distance and moderate clustering
coefficient [7].
For mapping the social relationships between users in the
MovieLens set, we chose the Barabasi-Albert model [1] to
create scale-free [2] power-law graphs. According to this
model we then applied the two following simple rules to
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(1)

Each node in the resulting graph represents a single user
within the virtual environment. Using Barabasi-Albert here
ensures that the generated number of links corresponds to
real social coherences, with only a small amount of users
constituting super nodes with a huge list of acquaintances,
while the majority only has a few.
For the experiments with the Epinions data set, we used
a trust-based graph model generated utilizing the trust and
distrust statements already contained in the set. Again, each
node in the graph represents a single user within the virtual
environment. In addition, each edge in this graph has a bi­
nary weight, where a positive weight represents trust and a
negative one distrust. While the generated scale-free graph
only ensures that the generated number of links corresponds
to real social coherences, the trust-based graph additionally
maps common interests between users.

These graphs each represent a snapshot of social rela­
tions between peers at a given time, with interactions be­
ing processed in a second step. To generate the interaction
pairs, we select one node as primary candidate with proba­
bility for selection proportional to its degree. This way, the
power-law property is extended also to the interactions , in
favor of super nodes. To further assure a correct representa­
tion of user behaviour, subsequently with a specified prob­
ability p a previously unknown, not yet connected node is
chosen as second participant to the interaction. Vice versa,
already connected neighboring nodes are chosen with prob­
ability I-p, with the only exception that negative-weighted
links are not being considered on the trust-based graph.

5.3 Evaluation Criteria

To measure the quality of our algorithm, we have chosen
the following two basic criteria in our experiments :

Firstly, for predictive accuracy we used the mean ab­
solute error (MAE) metric , which is defined as the absolute
average difference between predicted and actual ratings:



5.4 Experiments and Results

For investigating the behavior of our approach, we com­
pared an idealized global view, i.e, a complete knowledge
scenario where the peers have access to all data, to our epi­
demic algorithm based on local and limited caches with dif­
ferent parameter distributions.
As mentioned already in Section 4, capping the message
size is crucial for scalability within the targeted scenario.

with M being the total number of items in the testset hav­
ing a calculated prediction, while pred(i) and r(i) are the
predicted as well as actual ratings for an item i .
Secondly, besides a good predictive accuracy, the size of
the item-domain for which a recommender system can give
a prediction has a crucial impact on its suitability as under­
lined by Herlocker et al. in [12]. For this purpose, predic­
tion coverage was selected as further evaluation criterion.

MAE = L~o Ipred( i) - r( i) I
M '

(2)

For this reason, we restricted the additional overhead in­
duced by our CF algorithm on a management message to
a maximum of 40 kilobytes. With each entry coded into a
64 bit value (for instance 2 bits representing the rating it­
self, and the remaining bits for object and user identifiers),
this would allow for at most 5.000 of them in a single mes­
sage. For our experiments we furthermore limited the num­
ber of entries per profile to 40 (twice the amount of the mini­
mum ratings given by any user) , and then accordingly chose
the following Buddies/Others ratios: 120/0, 100120and
80/40 . For simplicity, all local entries are being exchanged
during an interaction, i.e, the local cache size equals the
maximum message overhead.
To assess the quality and use of our cache structure with the
altruistic Other s list, we investigated the aforementioned
list size ratios utilizing a set of different similarity thresh­
olds. A higher threshold implies better correlates within
the Buddies list which is expected to improve prediction
quality. On the downside, limiting the Buddies through a
very high threshold is likely to lead to a substantial decrease
of prediction coverage.

We simulated 1 million (MovieLens) and 2 million

~ 1 20 1 0

- 1001 20
~80 1 40

- complete

~ 1 20 1 0

- 1001 20
~801 40

-r-r-r corroiet e

"-
4 5

Interactions
4 5

Interactions

0 .951~-~-~-~-~~-~-;:==~:::::::::;-
~ 1 20 1 0

-<>-- 100 I20
~801 40

-r-r-r ccrrorete

0 .9 51~-~-~-~-~~-~-;:===::::::;

0.8

4 5
Interactions

Figure 3. Accuracy development under different thresholds (0.0 - 0.3), MovieLens.

Digital Object Identifier: 10.4108I/CST.COLLABORATECOM2009.8278
http://dx.doi.orgI10.41081ICST.COLLABORATECOM2009.8278



5
Interactions

- , 20 10
---0- 100 I20
- 80 140
-r-r-r corroiete

- , 201 0
- , 001 20
-80 140
-r-r-r ccn orete

5
Interactions

0.9 0.9

0.8 0.8

0.7 0.7

0.6
0.6

~ 0.5
~ 0.5
~

~ <I>
<I> >
> 8 0.48 0.4

0.3
0.3

0.2
0.2

- , 201 0
0.1

0.1 - , 001 20
- 80 140
-r-r-r corroiete

5 10
Interactions x 105

0.9 0.9

0.8 0.8

0.7 0.7

0.6 0.6

~ 0.5 ~ 0.5
~

~ <I>
<I> >> 8 0.48 0.4

0.3 0.3

0.2 0.2

- ' 20 10
0.10.1 -0-- 100 120

-80 140
-r-r-r ccrrorete 0

5 10 0

Interactions x 105

Figure 4. Coverage development under different thresholds (0.0 - 0.3), MovieLens.

(Epinions) interactions respectively, calculating predictions
every 10.000 steps based on the 80 most similar profiles.
Following that, we then measured accuracy and coverage
for these predictions as stated above.
Figure 3 and 4 showcase the development of the prediction
accuracy and coverage for the different ratios in comparison
to a complete knowledge scenario (red line) with equal size
restrictions and parameters for the MovieLens dataset. The
red line marks the value that would be reached if all users
had the profile information of their - globally seen - 80 most
similar users. Similarity thresholds for the Buddies list
starting from 0.0 to 0.3 are covered in both figures from top
left to bottom right. We did not simulate with all possible
threshold values, as the coverage would decrease to an un­
acceptable level.
As shown in Figure 3, prediction accuracy converges rel­
atively fast on the optimum within our simulation interval
(on average, every user has 14 interactions). The complete
knowledge value is not yet reached within this interval.
The expected positive effect of the rather altruistic Others
list reveals itself more and more with ascending similar­
ity threshold. However, over time the achieved accuracy

is slightly worse than with lower thresholds. This is likely
due to "random noise" generated by the fact that correlates
in the data set are too close in terms of their predictive qual­
ity. Albeit for a significantly smaller subset of Moviel.ens,
this effect has also been already reported in [11].
The coverage converges best with a similarity threshold of
0.0 as depicted in Figure 4. With the threshold ascending,
the algorithm also clearly benefits from the usage of the
Others list which improves convergence behavior sub­
stantially compared to a non-altruistic strategy, even if its
size constitutes less than 17 percent of the maximum capac­
ity as in the 100120 ratio. In addition to correlates in the data
set being rather close in terms of predictive quality, there is
a high number oflow correlates which ultimately lead to the
growing distance to the complete knowledge scenario when
excluded.

Overall, on the MovieLens data set the CF algorithm
shows a well-convergent behavior, which is also sustained
by the test runs we made on the set without limiting the
rating number as depicted in Figure 5. Both accuracy and
coverage values converge extremely fast and at first even ex­
hibit slight superiority to the complete knowledge scenario
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Figure 5. Accuracy and coverage development in unrestricted case, MovieLens.

but then settle on the same value. Considering the MAE,
the initial burst is related to the random noise phenomenon
mentioned before. On the coverage side, the most similar
peers do not have to necessarily be the heaviest raters and
coverage thus increases with less similar buddies before set­
tling on the final value.

We have conducted the same experiments on the Epin­
ions dataset , particularly because it is one of the largest
available sets and allowed for the promising opportunity of
trust-based modeling . Because of the majority being so­
called "cold start users" with extremely few ratings , after
two million simulated interactions the coverage reaches a
microscopical 0.07 percent, which does not allow for rea­
sonable measurements in view of our targeted scenario.
Also the MAE value measured for prediction accuracy is
questionable, because of the unbalanced distribution of rat­
ings which focus almost exclusively on the two highest pos­
sible values (10.421.534 rating 5, 2.063.927 rating 4).

It is intended to carry out further evaluations for examin­
ing different aspects of the approach in more detail. For in­
stance, the effects and selectional strategies needed in case
of the local cache size superseding the maximum message
overhead within an interaction is an interesting field to ex­
plore.
Also, it is planned to perform additional experiments within
the simulation environment TopGen [19], utilizing different
models to generate other interaction patterns, along with de­
ploying and testing the recommendation system - regarding
user numbers obviously on a smaller scale - also live.
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6 Conclusionand Future Work References

The presented CF algorithm provides a lightweight and
transparent way to generate recommendations within DVEs
using an epidemic aggregation mechanism. Designed to
be embedded in the underlying infrastructure of the Hyper­
Verse, only a small and most of all limited amount of fur­
ther network load is induced since the CF is realized as a
piggy-back mechanism of already existing messages. Our
distributed algorithm operates solely based on locally avail­
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